What is SSD
We’ll make no assumptions here and keep this article on a level that anyone can understand. You might be shopping for a computer and simply wondering what the heck SSD actually means? To begin, SSD stands for Solid State Drive. You’re probably familiar with USB memory sticks - SSD can be thought of as an oversized and more sophisticated version of the humble USB memory stick. Like a memory stick, there are no moving parts to an SSD. Rather, information is stored in microchips. Meanwhile, a hard drive uses a mechanical arm with a read/write head to move around and read information from the right location on a storage platter. This difference is what makes SSD so much faster. As an analogy, what’s quicker? Having to walk across the room to retrieve a book to get information or simply magically having that book open in front of you when you need it? That’s how an HDD compares to an SSD; it simply requires more physical labor (mechanical movement) to get information.
A typical SSD uses what is called NAND-based flash memory. This is a non-volatile type of memory. What does non-volatile mean you ask? The simple answer is that you can turn off the disk and it won’t “forget” what was stored on it. This is of course an essential characteristic of any type of permanent memory. During the early days of SSD, rumors floated around saying stored data would wear off and be lost after only a few years. Today this is not true; you can read and write to an SSD all day long and the data storage integrity will be maintained for well over 200 years. In other words, the data storage life of an SSD can outlive you!
An SSD does not have a mechanical arm to read and write data, it instead relies on an embedded processor (or “brain”) called a controller to perform a bunch of operations related to reading and writing data. The controller is a very important factor in determining the speed of the SSD. Decisions it makes related to how to store, retrieve, cache and clean up data can determine the overall speed of the drive. We won’t get into the nitty-gritty details for the various tasks it performs such as error correction, read and write caching, encryption, and garbage collection to name a few. Yet, suffice to say, good controller technology is often what separates an excellent SSD from a simply good one. An example of a fast controller today is the SandForce SATA 3.0 (6GB/s) SSD controller that supports burst speeds up to 550MB/s read and write speeds.
Finally, you may be wondering what an SSD looks like and how easy it is to replace a hard drive with an after-market device. If you look at the images below you’ll see the top and undersides of a typically-sized 2.5” SSD. The technology is encased inside either a plastic or metal case and looks like nothing more than a battery might:
The form factor of the SSD is actually the same as a regular hard drive. It comes in a standard 1.8”, 2.5”, or 3.5” size that can fit into the housing and connectors for the same-sized hard drives. The connector used for these standard sizes is SATA. There are smaller SSDs available that use what’s called mini-SATA (mSATA) and fit into the mini-PCI Express slot of a laptop.
A typical SSD uses what is called NAND-based flash memory. This is a non-volatile type of memory. What does non-volatile mean you ask? The simple answer is that you can turn off the disk and it won’t “forget” what was stored on it. This is of course an essential characteristic of any type of permanent memory. During the early days of SSD, rumors floated around saying stored data would wear off and be lost after only a few years. Today this is not true; you can read and write to an SSD all day long and the data storage integrity will be maintained for well over 200 years. In other words, the data storage life of an SSD can outlive you!
An SSD does not have a mechanical arm to read and write data, it instead relies on an embedded processor (or “brain”) called a controller to perform a bunch of operations related to reading and writing data. The controller is a very important factor in determining the speed of the SSD. Decisions it makes related to how to store, retrieve, cache and clean up data can determine the overall speed of the drive. We won’t get into the nitty-gritty details for the various tasks it performs such as error correction, read and write caching, encryption, and garbage collection to name a few. Yet, suffice to say, good controller technology is often what separates an excellent SSD from a simply good one. An example of a fast controller today is the SandForce SATA 3.0 (6GB/s) SSD controller that supports burst speeds up to 550MB/s read and write speeds.
Finally, you may be wondering what an SSD looks like and how easy it is to replace a hard drive with an after-market device. If you look at the images below you’ll see the top and undersides of a typically-sized 2.5” SSD. The technology is encased inside either a plastic or metal case and looks like nothing more than a battery might:
SSD Top Side
|
SSD Bottom Side
|
0 comments:
Post a Comment